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A study of the flow mechanism for nonlinearly viscous microinhomogeneous media makes 
it possible to predict, according to component properties, the effective flow parameters 
for emulsified liquids, suspensions, lubricant additives, and other dispersed systems. A 
multicomponent viscous medium is considered consisting of a uniform matrix and a random mass 
of ellipsoidal inclusions. Computation of macroscopic rheological constants for the medium 
is accomplished by a variant of the effective field method suggested in [i, 2] for solving 
a broad class of elasticity problems in structural mechanics. The method is based on asymp- 
totically accurate solution of binary interaction of inclusions which are in an effective 
field assuming uniformity of stresses within each inclusion. Solution of the problem was 
obtained assuming uniformity within each tensor component characterizing the nonlinear pro- 
perties of the material. 

i. General Relationships. We consider an unbounded inhomogeneous medium whose com- 
ponents are described by rheological equations local at point x for the relationship between 
stress o and strain rate g tensors: 

= L(a)8 ( 1 . 1 )  

[L( r  i s  v i s c o s i t y  t e n s o r  o f  t h e  f o u r t h  r a n k  g o v e r n i n g  t h e  l i n e a r  and n o n l i n e a r  r h e o l o g i c a l  
p r o p e r t i e s  o f  t h e  medium] .  I t  i s  p o s s i b l e ,  by means o f  t e n s o r  L, t o  d e s c r i b e  t h e  mechan ism 
o f  b u l k  v i s c o s i t y  and componen t  a n i s o t r o p y .  

L e t  m a t r i x  v0 ,  w i t h  c h a r a c t e r i s t i c  f u n c t i o n  V 0 and t e n s o r  L0, c o n t a i n  a random a s s e m b l y  
X = (V k,  x k ,  ~k)  o f  e l l i p s o i d s  v k w i t h  c h a r a c t e r i s t i c  f u n c t i o n s  Vk, c e n t e r s  Xk, f o r m i n g  a 
P o i s s o n  p o i n t  f i e l d  w i t h  s e m i a x e s  a k i  ( i  = 1, 2,  3; a.kZ ~ a k  2 z a k 3 ) ,  a s e t  o f  E u l e r  a n g l e s  
~k,  and t e n s o r s  L 0 + L l ( k ) .  H e r e  and b e l o w ,  i t  i s  a s sumed  t h a t  a l l  o f  t h e  random v a l u e s  
a r e  s t a t i s t i c a l l y  u n i f o r m  and a r e  e r g o d i c  f i e l d s ,  and t h e i r  m a t h e m a t i c a l  e x p e c t a t i o n  c o i n -  
e i d e s  w i t h  c o m p o n e n t s  Xa a v e r a g e d  f o r  t h e  vo lume :  

<(-)>~ = (m~s ~,~)-~ ~ (.) V~(x) dx, <(.)> = 

= (rues ~,,)-~ J" (.) W (x) ttx (~z = O, t . . . .  ), 

zv ~ O v=, W= ~V=, <(.)lxl) is conditional average for the assembly of field X, assuming 
~ 0  ~ 0  

that at point x z there is an inclusion v~. 

It is assumed that the hydrodynamics of components are described by equations of viscous 
flow and only hydrodynamic interaction exists between inclusions. Brownian movement of in- 
clusions is not considered. It is assumed that L is determined by the first invariant of 
the strain tensor 11 = Eii and by the second invariant of the strain rate deviator 12 = 
eije~j, eij = Eij - ~0~ij, g0 = Eii/3- In particular, for isotropic components we shall use 

L = (3L ~, 2L 2) = 3L~N1 + 2L2N2, Nz = ~ij6k~/3, N 2 = (~i~Sjk~j~ - 26i~k~/3)/2. With L z = ~, 

L 2 = const there is an incompressible Newtonian fluid, and with 2L 2 = 2D0~ there 
is a power fluid. 

In the general case system (i.I) is not linear, and in order to use known linear methods 
of elastic theory [i, 2] for obtaining effective rheological rules it is necessary to linea- 
rize the nonlinear equation by making additional assumptions. 
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It is assumed that L(x) within the limits of each component depends on average values 
according to the component of the function of invariants I l and I~. A similar assumption 
is made in the majority of works for nonlinear problems of structural mechanics [3, 4]. Then 
tensor L(x) is piecewise-constant in region w, and in analyzing a microinhomogeneous material 
it is possible to use the effective field method developed in linear elastic theory. With 
the assumptions adopted, the expression for effective viscosity is found by averaging local 
gq. ( i . i )  [i,  2]: 

<,~> = ~* <~>, L* = Z~o -',- v (r,~,~)Ly,>, ( 1 . 2 )  
#, 

where constant tensgr B k describes the average concentration of strain rates in the k-th 
inclusion <sVk> k = Bk<s>. Since with the assumptions adopted, L l is a piecewise-constant 
function of the coordinates, then in estimating B k it is possible to use known methods for 
transforming the equilibrium equation oij,j = 0 to an integral equation [i, 2]: 

(x) = <e> -!- .! G ( .  - ,~,) {L, (~,) e (y) V (.v) - -  <&s (~/) v (~,)>} @ ( 1 . 3 )  

[G(x - y) = VVU(x - y) is expressed in terms of Green tensor U of the equilibrium equation 
for a uniform medium with parameters Lo, V(y) = W - V0]. Relationship (1.3) is formally 
similar to that obtained in [i, 2] for the problem of linearly-elastic composite materials 
with the same differences in which tensors U, LI, and L 0 are functions of previously unknown 
strain rates for the components. Therefore, in what follows, details of deriving relationships 
similar to [i, 2] are omitted. 

We fix arbitrary realization of assembly X and we consider an inclusion with number 
i. We designate in terms of s i the local external fields in which the i-th inclusion is 
found; from (1.3) we find 

7~ = <~> + j" c, ( .  - y) { ~  (v) e (,.0 ~T (v; z) - <&ev>} @ (1.4) 

[V(y; x) = V(y) - Vi(x)]. In order to calculate the average <~i > it is necessary to pre- 
scribe the structure of the composite which is written by a binary function of distribution 
~(Xk, ~klXi, ~i), i.e., the probable location of the k-th inclusion in assembly X with fixed 
i-th inclusion. Since inclusions do not intersect, then ~(Xk, ~klXi, ~i) = 0 in the vicinity 
of Vik' (with characteristic function Vik') of region v i. We shall not consider close order- 
ing in inclusion location [5] and percolation effects typical for small inclusions connected 
with formation of the skeletal structure of a suspension and a sharp increase in viscosity 
[6]. For simplicity we assume that Vik' is a sphere of radius aik = ak I + ak 3, and ~ is 
centrally symmetrical: 

f~:~, ~ t*~, ~ )  = ~ ( ~ ) q ~ ( I r  I) (rues ~t~)-< ( 1 . 5 )  

Here Irl = I x i  -- Xk[, ~l(Iri) = 0 with r e v i' and fl(rl) § nk with Irl § ~; n k is a countable 
-- I 1 z a 

concentration of inclusions; c k ~ <Vk> - (4v/3)ka~a~a~>n k. For definiteness we assume 
that x i = 0, and we average (1.4) for assembly X('Ixi, mi): 

<~> = <~> + ~ G (x - ~) {<t ,  (~) ~ (y) v (~; 0) l 0> - <L,~V>} @ ( 1 . 6 )  

2.  S o l u t i o n  o f  t h e  P r o b l e m  f o r  One and  Two i n c l u s i o n s .  I n  o r d e r  t o  d e t e r m i n e  <~i> 
i n  ( 1 . 6 )  we f i r s t  c o n s i d e r  t h e  p a r t i c u l a r  c a s e  o f  an  i s o l a t e d  i n c l u s i o n  v i i n  an  i n f i n i t e  
m a t r i x  w i t h  a u n i f o r m  f i e l d  s o = L 0 - ~ o  ~ = c o n s t ,  p r e s c r i b e d  a t  i n f i n i t y .  S i n c e  L 0, L~ = 
const in the matrix and inclusion, then s o according to the theorem of polynomial conserva- 
tiveness [7], clearly determines the uniform strain rate field within the i-th inclusion: 

~ {~) = A~< A~ : (~ + P ~ )  % < : ~o~ ,  ~,~ : (~o + ~i ~,) ~ ,~L~o ,  (2 .  l )  

where x e v i and constant tensor Pi = -fG(x - Y)Vi(Y)dy (x ~ v i for isotropic L 0 considered 
in this work is known [7]). Since L 0 and L I depend on s, then (2.1) may be solved similarly 
to [8] by the method of successive approximations. As numerical examples have shown, con- 
vergence developed after five to seven iterations. 
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For two inclusions v i and vj in an infinite matrix from (1.3) assuming uniformity of 
field s ~ in the vicinity of each inclusion we obtain, by the method of successive approxima- 
tions [i], 

L~(yi)e(y~) rues t'i = R J i i e  ~ SLl(yi)e(yi) rues t; i = ( l i : - - I ) s ~  

oo 

~ = 0  I = 0  

S --~ ( l n o s  u i ltl(~.S Uj) -1 S ~7i ('~) dy y V] (x) ~ (,T. - -  ~l) dx, iI~i = Ll(yi)A i l n e s  u i. 

( 2 . 2 )  

( 2 . 3 )  

Thus, inclusion v i is found in a uniform field depending on geometric and rheological 
properties of the inclusion in question. 

In the future it is necessary for us to estimate <<Jij>>ij for the average value of 
tensor Jij with respect to mi and ~j in a sphere of radius-lr I = Ixi - xjl with a center 
at x i. It is noted that S( r I) § G( r ) with Irl + ~, and, therefore, we take the point 
approximation for the inclusion S(Ir I) = G(Ir I) [i, 2]. For three terms of expansion (2.3), 
<<Jij>>ij = I + J~ I) ~ I + <<SRjSRi>>ij. For an isotropic matrix and equally probable 

6rientation of inclusions, tensor j0 appears to be isotropic: 

= O,] ' IA,  1 . ~  2 ~ 2 A r 2 ,  q o = ] _ a  o.I~ 2;  2 (3)~j) (2; i)  I r , yO( l r l  ) ~ o . . . .  

2 ~  = (2/5) [g~- (ok0 ( -~ )  + (2~0 (2~j) (75, ~ - W 4  + 2gn)l I r i-% 
= ( 3 G + 4 ~ o ) - L  ~1 = (3~o)-L '~ = (31%§ 

3 

(3/q, 21a 0 := j" L~ (Y0 A, d o ) i I I  ~?, = (3ko, 2~0). 
n : - I  

3. Estimation of Effective Rheol0gical Parameters L*. In obtaining an expression for 
<el > from (1.6') we take the hypothesis of an effective field [i, 2] according to which the 
i-th inclusion is in a uniform field g i depending on geometrical and rheological properties 
of vi, and also each pair of inclusions vi, vj exists in a uniform field sij = ~ = const, 
independent of the properties of the pair in question. Then, in order to calculate nominal 
averages in (1.6), we use relationships (2.1) and (2.2) with three terms in the series and 
substitution in them of s o by s(x). From (1.2), (1.6), and (2.1) we obtain 

<~(xi)> . . . .  D<e>, D {/(I c) ,'-- <AV> 5<<Jij (i- V ~ dx} -I, 
L* =: L o@ <R )D, ])t~ = AhD. 

( 3 . 1 )  

Until now it has been assumed that L 0 and L I are known, but according to the assumption they 
depend on unknown strain rate fields in the compounds. Therefore, we make a number of assump 
tions. Let L i = Li0g(I l, I2), where g is a scalar function of invariants 11 and I2, and 
similarly to [3] we take the hypothesis of absence of fluctuations in g not only within the 
limits of component X~, but also within the whole volume w: g(Il, 12) = const. Then GLI, 
A, GRi, and D are constant tensors independent of strain rate, and the problem of estima- 
ting effective properties for the material is linear: 

n : #  ~ $ Lo g 6rl, A),  
N 

"~ L~oAiDci L,* = Loo + .~ 
'i:= 1 

(as 11 and 12 it is natural to take invariants of tensor <s>). 

We weaken the assumption of uniformity for functions taking account of nonlinear proper- 
ties for the material, and, similar to [4], we shall assume that L 0 and L I are determined 
by average values of the invariants for tensor s within the limits of the component in ques- 
tion. In view of the uniformity of field e i within an inclusion for the second invariant 
we shall assume approximately 12k = <eij>k<eij> k. The expression for the second invariant 
in matrix 120 is found by means of apparent relationships 
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t t _ _  

( I  - -  c) <(LoJ ~>o --  <f~r <~> + <Lo~ ~ > ~ c. <Lo~>h <e>~, 

(a prime denotes fluctuations q' = q - <q>). Then, considering that with transformation 
of the volumetric integral according to the first Green equation the value of surface integral 
with respect to 8w related to mes w tends toward zero with mes w ~ ~, and we have 

, , ] (h)  

Thus, 
by means of the relationships 

I2t ~ = (N,,A~,D <e ))(N2Aj, D (~)), 

f~o = ( 2~ , j - q l ( z , *  <~>) <~> - (<(L o -I- 

+ L,) NOV) <s>)(<Al, D> <e>)] (t -- c) -1 -- 3-s 

Iv~ = -  6AkD (e), 11o = (5(1-- (A V>D) (~)/(t--c), 6 = (~u. 

invariants Ii~ and I2~ only depend on uniform fields and they may be expressed 

( 3 . 2 )  

2 which is accurate for In deriving (3.2), an assumption was made: <giiojj> 0 = 3k01z0 , 
an incompressible matrix. Since in Eqs. (2.1) and (3.1)A k and D depend on invariants Ii~ 
and I2~ (~ = 0, i, ...), then in the general case Il~ and I2~ may be found by the method 
of successive approximations. In fact, in the zero iteration it is assumed that Ii~ = <sii >, 
I2~ = <eij><eij> , then successively we find the zero approximation for A k and D, the first 
approximation for 11~, 12~, L 0, LI, Ak, D, etc. 

4. Example. We consider cases of practical importance when it is possible to construct 
L* in explicit form. Here it relates to a material with absolutely rigid inclusions and 
pores when 111 , 121 = 0 and L 0 + L I = 0. 

Let hard spherical inclusions of a single size be found in an incompressible matrix, 
Then 

:.,0 = L(<~ > ) d - c ) - V ( c ) ,  

where f(c) = 1 + 5c(l - 31c/16)-z/2 and, for example, for a power matrix with L 0 
2P0 ~ 

L~: (~o ,  '~ ~ (c) <' '+'>/2 , ,<, , - , ) /~ = - m !  ( i  - -  c) <1-'')/2 (<eu> <e~:;) , .  

( 4 . 1 )  

L = ~ 2L02 = 

( 4 . 2 )  

For a Newtonian fluid n = 1 and (4.2) coincides with a similar relationship in [2]. We com- 
pare (4.2) with the results of studies of other authors. In particular, it follows from 
[3] that 

L *  ( ~ , o  0. <e~j>)(~-l>~) - -  .~0/ l (c)(~e~:> ( a . 3 )  

[ f z ( c )  = 1 + 5c(1 - c ) - 1 / 2 ] .  Expression (4 .3 ) .  in cont ras t  to (4 .2 ) ,  con t rad ic ts  the re l a -  
t i onsh ip  L* = (~, 2P0~ c)(<eij><eij>)(n-1)/a) obtained in [9] by the method of analyzing 
dimensions [f2(n, c) is a function depending only on n and c]. An expression was found in 
[10] 

c~[ !/ . j  
! 

{ ' 

I 4 i ' 

I i i 

4LO,2 o d5 n .... 

Fig. 1 

o ~,2 c 

Fig. 2 
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( ~ - - - - - - ~ , .  (<~j> <o~j>)('~-~)/~ , 
- -  C / C m a x )  1,'3 / 

leading to contradictory results with n < 0.5 (viscosity falls with an increase in c); Cma x is 
the maximum degree of inclusion packing for a given fractional makeup. 

We compare calculated curves L* = L*(c, n) for different methods with an experiment 
[ii, 12]. For a Newtonian matrix n = 1 in [2] a comparison is provided with an experiment 
up to c = 0.43; it was demonstrated that calculated estimates for shear modulus by the effec- 
tive field method [i, 2] are more accurate by a factor of two compared with theoretical re- 
sults of other authors. We consider the opposite case n ~ i, c § 0. Presented in Fig. 1 
are experimental [12] and calculated data on coordinates ~ = [~*/~0 - l]/c ~ n. Curves 1-4 
were calculated by Eqs. (4.3), [13], (4.2), and [12], respectively; relationships in [12, 
13] were obtained assuming infinite smallness for concentration c. Equation (4.2) is valid 
over a wide range of values of c, and it gives satisfactory agreement with an experiment. 
Shown in Fig. 2 is comparison of experimental data [12] (n = 0.41) with curves 1-3 calculated 
by methods in [9], (4.2), and in [Ii]. 

For spherical pores of a single size in an incompressible power matrix 

L *  - -  2p~ [ / z ( i  - -  c) -1  <8~i> 2 -i- 2/4 (1 - -  c) -1 <ei.;> <e i ;>] (n-x) /e  (3/3 , 2/4),  

3/3 : 2(1--29/24c)/c, 2/~--- (i--35/2~c)(l-i-5/2~c)-L 
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